5.1 Graphs of Reciprocal Functions

A General Rules

Let consider a continuous function $y=f(x)$ and its reciprocal $g(x)=\frac{1}{f(x)}$. Here are some general rules:

1. If $y=f(x)>0(y=f(x)<0)$, then $g(x)=\frac{1}{f(x)}>0$ $\left(g(x)=\frac{1}{f(x)}<0\right)$.
2. If the function $y=f(x)$ is even/odd/neither, then the reciprocal function $g(x)=\frac{1}{f(x)}$ is also even/odd/neither.
3. If the function $y=f(x)$ is increasing/decreasing over an interval, then the reciprocal function $g(x)=\frac{1}{f(x)}$ is decreasing/increasing over the same interval.
4. If the function $y=f(x)$ has a local/global minimum/maximum at $(a, f(a)$), the reciprocal function $g(x)=\frac{1}{f(x)}$ has a local/global maximum/minimum at $(a, g(a))=\left(a, \frac{1}{f(a)}\right)$.
5. If the function $y=f(x)$ has a horizontal asymptote $y=a(y \rightarrow a$ as $x \rightarrow \pm \infty)$, then the reciprocal function $g(x)=\frac{1}{f(x)}$ has horizontal asymptote $y=\frac{1}{a}$.
6. If the function $y=f(x)$ is unbounded ($y \rightarrow \pm \infty$) as x becomes unbounded ($x \rightarrow \pm \infty$), then the reciprocal function $g(x)=\frac{1}{f(x)}$ has the horizontal asymptote $y=0$.
7. If the function $y=f(x)$ has a real zero at $x=a$, then the reciprocal function $g(x)=\frac{1}{f(x)}$ has a vertical asymptote $x=a$.
8. If the function $y=f(x)$ has a vertical asymptote $x=a(y \rightarrow \pm \infty$ as $x \rightarrow a)$, then the reciprocal function $g(x)=\frac{1}{f(x)} \rightarrow 0$ as $x \leftarrow a$.

Ex 1 . The function $y=f(x)$ is represented graphically below. Use the general rules to graph its reciprocal function $g(x)=\frac{1}{f(x)}$.

Ex 2. Graph the linear function $f(x)=2 x-4$ and its reciprocal $g(x)=\frac{1}{2 x-4}$ on the same grid.

Ex 3. Graph the quadratic function $f(x)=x^{2}+2$ and its reciprocal $g(x)=\frac{1}{x^{2}+2}$ on the same grid.

Ex 4. Graph the quadratic function $f(x)=(x-1)^{2}$ and its reciprocal $g(x)=\frac{1}{(x-1)^{2}}$ on the same grid.

Ex 6. Graph the cubic function $f(x)=x^{3}-1$ and its reciprocal $g(x)=\frac{1}{x^{3}-1}$ on the same grid.

Ex 8. Graph the function $f(x)=\left|x^{2}-4\right|$ and its reciprocal $g(x)=\frac{1}{\left|x^{2}-4\right|}$ on the same grid.

